Generate plausible but incorrect SQL queries for the BIRD benchmark dataset
This tool automatically generates incorrect SQL queries for natural language questions in the BIRD benchmark. The generated queries are syntactically valid but produce incorrect results, simulating realistic mistakes.
Natural Language Queries
Incorrect SQL Queries
Databases
| Database | Queries |
|---|---|
| student_1 | 1 |
| restaurant_1 | 1 |
| library_1 | 1 |
| california_schools | 1 |
| superhero | 1 |
| student_club | 1 |
Our system uses a sophisticated validation process to ensure generated incorrect queries are:
For bulk processing, you can also use the command line:
python -m src.main --num_queries 100 --min_errors 1 --max_errors 5 --analyze